
L E T T E R S  TO THE E D I T O R  

UDC 536. 423, 4 

C A L C U L A T I O N  OF THE C O N D E N S A T I O N  C O E F F I C I E N T  

D. A. Labuntsov 

Inzhenerno-Fizicheskii Zhurnal, Vol. 8, No. 6, pp. 820-821, 1965 

In certain conditions, the rates of  Condensation and evaporation processes depend on the kinetics of  the phase tran- 
sition itself. In calculating such processes, data on the coefficients of condensation (evaporation) are necessary, since 
these reflect the relative rate of  interphase molecular transfer [1, 2]. 

In [3] an attempt was made to use the concepts of  quantum mechanics in calculating these coefficients, aH indi- 
vidual features of  the structure of the condensed phase being ignored. The analysis is based on two characteristics only: 
the kinetic energy of  the vapor molecule and the heat o f  phase transformation. The strangeness of  this formulation be-  
comes obvious, if it is considered that, on the one hand, never before have quantum-mechanical  effects been acknow- 
ledged to be important in the problem examined and, on the other, that any classical analysis requires a more or less 
detailed model of the condensed phase [1, 2]. 

It is also necessary to point out that the final relation of  [3] appears strange in view of the absence of  a quantum 
constant. Therefore, in particular, a transition in the l imit  to classical mechanics is impossible, although it is known 
[4, 5] that such a transition must exist for a physically correct quantum-mechanical  formulation. 

Any comparison of  the reIations presented in iS] with previous studies is therefore impossible in principle. 

In connection with the topicality of  the problem of evaiuating coefficients of  condensation (evaporation) in a num- 
ber of  important practical areas, the above points deserve to be considered in somewhat greater detail. 

It is known [5] that under the conditions of  interaction of moving particles with a force field, estimation of  the 
significance of  quantum-mechanical  effects is very easy. It reduces to a comparison of  the energy of  tile particle E 
with the quantity fi2/2rna2, where a is the spatial scale of  appreciable change in the force field (potential energy of  
interaction). In this case a quantum-mechanical  description of  the interaction is found to be necessary when E <  
<fi2/2rna 2, whereas when E >>fi2/2maZ the interaction takes place in accordance with the laws of classical mechanics. 
In examining the collision of  vapor molecules with molecules of  the surface layer o f  condensed phase, the quantity a 
can be assumed to be of  the order o f  the intermolecular distances in the condensed phase, i . e . ,  a ~-~ (m/p)'/ , .  

The kinetic energy of  the vapor molecules E = S/2kT. Then the ratio 

2mEa2/h 2 = 3inky (m/p)'/,/fi ~. (1) 

Calculations ~how, that for all real cases this ratio is substantially greater than unity. Thus, for water T = 800~ 
ratio (1) is ~ a ,  10 s, for sodium T = 1000~ "~ 2 �9 104, etc. 

From this it follows that the problem in question belongs among the phenomena that obey the laws of classical 
mechanics. All known theoretical investigations [1, 2] have proceeded on this basis. 

Quantum-mechanical  analysis, carried out without violation o f  the condition 

2mEa2/~ ~ ~ 1, (2) 

must lead to the same results as the classical solution. 

In is] the "condensation" of  a vapor molecule is treated as transition of  the particle from a region of  zero poten- 
tial energy (vapor) m a region of negative potential energy (condensed phase). This completely ignores the processes of 
collision of vapor molecules with molecules of  the surface layer o f  the condensed phase and, consequent/y, the possi- 
bility of  reflection of  impinging vapor molecules. Therefore, if the quantum-mechanical  description [3] had been con- 
structed without regard for condition (2), the result would have been the obvious (for such an idealized formulation) 
answer: the condensation coefficient is identically equal to unity. All molecules flying in the direction of  the condensed 
phase would enter its zone of attraction and inevitably (collision and reflection excluded) go over into the liquid region. 

However, in iS] it is groundlessly assumed that the nature of  the change in potential energy at the phase interface 
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is discontinuous. Hence, the dimension of the zone of appreciable change in potential energy Is equal to zero (a = 0), 
and condition (2) is hopelessly infringed, for now 

2mEaVh 2 ~ O. 

This abstract case (equivalent to an infinitely large value of the quantum constant) is devoid of physical meaning in 
relation to the processes considered. 
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In the theory of evaporation the condensation coefficient f is equal to the ratio of the number of condensing mole- 
cules to the total number of vapor molecules striking the surface of the condensate. Theoretical and experimental studies 
of the condensation coefficient [1-3] show that it is determined by the change in the energy state of molecules during 
phase transition and on the purity of the surface of the condensed phase. 

The basic idea of reference [3] consists in the application of the solution of the "barrier problem" of quantum me- 
chanics to the calculation of the condensation coefficient. 

In this formulation of the problem, the difficulties of constructing a model of the process that fully corresponds 
with reality are reduced to determining the height and shape of the barrier. The first of these is determined by the ac- 
tivation energy (which is not always equal to the heat of vaporization), the second comprises determination of the bar- 
rier width. 

For a clean surface of the condensed phase, the condensation coefficient is determined by the change in the energy 
state of the molecules during phase transition. 

Collision of vapor molecules with condensate and the possibility of reflection of the incident vapor molecules are 
determined by the transmission and reflection processes at the boundary between two regions of different potential. Here, 
in each specific case of a barrier of a certain shape and width and also for different relationships between the total en- 
ergy and the height of barrier, it is necessary to use the corresponding solution of the Schroedinger equation. 

Reference [3] presents an example of calculation of the condensation coefficient in the case when the' activation 
energy is equal to the heat of vaporization and the total energy is greater than the height of the barrier, in this case the 
condensation coefficient is treated as the probability of molecules crossing the boundary between regions of different po- 
tential. The manifestation of the quantum effect (nonzero reflection) is then determined by the width of the transition 
region. Increase in the width of the transition region causes the reflection to tend to zero. 

Since the question of the shape of the barrier is a topic of special investigation for each substance, in order to 
estimate condensation coefficient in the first approximation the width of the transition region was assumed equal to 
zero. With the above assumptions (activation energy equal to the heat of vaporization and width of transition region 
equal to zero) the condensation coefficient was calculated for a number of substances at different temperatures. The 
values of the condensation coefficient were found to be close to one and exactly equal to one at the critical tempera- 
raE~ 

When the width of the transition region is taken into account, the condensation coefficient will tend to one. This 
result corresponds to the value ~e = 1 obtained in Hertzfeld's classical examination of the problem [4] and by a number 
of other authors [1, 2]. Moreover, experimental determinations of the condensation coefficient, in conditions close to 
the conditions of the assumed model, also give values close to one [6]. 
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